Connecticut Water Planning Council Flowchart

Connecticut Water Planning Council Issue 7

Recommended methods for measurement and estimations of natural flows in Connecticut waterways in order to determine the standards for streamflows that will protect the ecology of the state's rivers and streams.

Issue 7 Technical Committee Member Organizations

- Co-chairs: Waterbury Bureau of Water/ Farmington River Watershed Association
- Government: USGS, EPA, DEP (3), CT DPH, Fisheries Advisory Council
- Conservation: TU, Pomperaug Watershed
- Water Companies: Aquarion (2),SCRWA, CT Water, Manchester Water and Sewer, RWA
- Consultants: KA, Leggette, Brashears, Milone & McBroom
- Academic: UMass-Dartmouth, UCONN/CT IWR

Issue 7 Consensus Statement

- Explore interim instream flow method for use over next five years
- Establish scientific framework to create and implement long-term instream flow protocols
- Establish process for ongoing review of methods
- Identify funding needs
- Identify implementation measures

Types of Instream Flow Assessment tools

ΤοοΙ	Description	Examples
Baseline	Establishes environmental	RVA
	or reference conditions	IBI, IHA
Standard-setting	Sets limits or rules to	Tennant
	define a flow regime	ABF, Wetted Perimeter
		R2-Cross
Incremental	Analyzes single or multiple	IFIM,
	variables to enable	PHABSIM, MESOHABSIM
	assessment of different	RCHARC, SNTEMP
	flow management	Demonstration Flow
	alternatives	Assessment
Monitoring / Diagnostic	Assesses conditions and	IBI, HQI, IHA
	how they change over time	

(Instream Flow Council 2001)

Mad River Daily Flow Hydrograph Water Year 1975

Apse Connecticut Method

Selected 10 Connecticut rivers which are wholly unregulated or slightly regulated
At least 30 years of record
Watershed areas between 4.1 and 203 square miles

Calculate monthly numbers using FWS approach for Jul.-Sept. (median of monthly means)/ median of daily for Oct.-June)

Ten Unregulated Gages

	ABF Calculation in cfsm											
					<u>(%duation</u>	<u>flow)</u>		-			-	
	<u>Termile</u>	Burlington	Saugatuck	Hubbard	Mt. Hope	Salmon	Little	Salmon	Pendleto	Sasco.	Mean	Median
	River	Brook	River	River	River	Creek	River	River	n	Brook		
									Hill			
									Brook			
October	035	0.83	0.50	0.61	0.61	0.67	0.65	0.60	0.68	0.72	0.62	0.63
	(46)	(38)	(47)	(40)	(37)	(50)	(43)	(38)	(40)	(30)	(41)	
November	0.94	1.82	1 <i>5</i> 3	1.76	139	1.40	1.49	131	1.58	130	1.45	1.45
	(43)	(32)	(38)	(34)	(37)	(40)	(38)	(40)	(42)	(40)	(42)	
December	1.50	195	2.41	2.18	1.83	1.50	191	1.85	233	2.07	195	1,93
	(41)	(32)	(40)	(30)	(40)	(45)	(42)	(40)	(44)	(38)	(39)	
January	1 39	190	2.18	1.65	2.24	1.70	2.43	235	2.85	2.08	2.08	2.21
	(45)	(31)	(38)	(31)	(31)	(32)	(31)	(33)	(33)	(36)	(34)	
February	1.70	199	2.65	1.65	238	1.61	2.57	2.40	3.16	2.19	2.23	2.29
_	(38)	(34)	(34)	(34)	(36)	(40)	(33)	(37)	(34)	(38)	(36)	
March	296	3.85	3.23	3.25	355	2.72	3.47	3.62	3.79	3.04	335	3.36
	(38)	(30)	(40)	(40)	(34)	(40)	(32)	(34)	(38)	(34)	(36)	
April	2.79	3.53	3.04	4.17	3.01	3.08	3.16	3.24	3.55	3.02	3.26	3.12
_	(47)	(33)	(37)	(38)	(37)	(38)	(34)	(36)	(36)	(28)	(36)	
May	1.62	2.27	185	2.43	2.15	196	2.12	2.14	236	1.82	2.07	2.13
-	(43)	(34)	(42)	(30)	(32)	(36)	(36)	(38)	(40)	(38)	(37)	
hme	0.81	1.17	0.80	091	0.78	0.98	0.99	0.93	1.09	0.66	091	0.92
	(45)	(37)	(45)	(34)	(45)	(44)	(41)	(43)	(43)	(47)	(42)	
hily	0.53	0.74	0.49	0.38	0.43	0.68	0.59	0.45	0.51	034	0.51	0.50
-	(38)	(34)	(34)	(33)	(32)	(36)	(34)	(38)	(35)	(37)	(35)	
August	031	0.55	0.39	0.24	031	0.43	0.44	0.34	0.28	0.39	0.37	0.37
	(40)	(39)	(34)	(34)	(34)	(49)	(37)	(36)	(42)	(30)	(38)	
September	0.28	0.59	031	0.27	0.25	0.55	0.44	036	0.32	0.38	0.38	034
•	(40)	(34)	(36)	(38)	(45)	(40)	(34)	(36)	(36)	(30)	(37)	

Figure 6: Proposed Connecticut Interim Instream Flow Standard vs. USFWS New England Aquatic Base Flow Standard

	Median of the	Median of the	Apse's
	mean daily	mean monthly	Recommendati
July	0.33		
August	0.23		
September	0.22		
October	0.45	0.62	0.45
November	1.14	1.45	1.14
December	1.52	1.95	1.52
January	1.53	2.08	1.53
February	1.77	2.23	1.77
March	2.60	3.35	2.60
April	2.54	3.26	2.54
May	1.63	2.07	1.63
June	0.77	0.90	0.77

CT Water Planning Council 2003 Recommendations to Legislature

- Endorse need for Interim and Long-Term Stream Flow Methods.
- Agreement by WPC that Apse approach is a reasonable reconnaissance-level approach.
- Although subcommittee did not agree on summer statistic, WPC chose median of daily flows
- DEP will set up working group to establish framework for using interim approach for regulating streamflows and to revise minimum streamflow regulations.
- DEP will continue to work with stakeholders to develop a long-term approach.

Recommended Interim Method

- If site is in one of ten unregulated "Apse" basins use basin-specific monthly statistics
- If site is located outside ten basins
 - a. Use statewide monthly default criteria or
 - b. Estimate monthly statistics using rainfallrunoff model or QPPQ transform
 - c. Estimate statistics from a suitable alternative gauged watershed (unregulated/long term record)
- Alternatively, scientifically defensible sitespecific studies to determine ecologically protective flows.

Technical Subcommittee consensus, scientific assumption

". In the absence of site – specific data that allow a better understanding of the relations between flow and biotic integrity, flows are sought that generally mimic the essential components of the natural flow regime under the assumption that ecological processes will then foster a desirable aquatic community"

Qualifications to committee recommendations

- Majority of committee recommends reconnaissance-level technique as reasonable interim method
- Long-term method needs to be developed which establishes flow/habitat relationships during all months
- Majority agreement to use Median daily flows October –June
- No agreement on flow statistics for July, August and September (ie, median daily or median monthly)

Management Recommendations

Adaptive Management

- Water conservation as a "source" in lieu of new or proposed sources
- Mandatory water use restrictions to protect water supply and natural resources during low-flow periods
- Optimizing rate and timing of withdrawals
- Increased infiltration of stormwater
- Short-term pulsed flows as alternative to continuous releases
- Provision to include flushing flows

CT Water Planning Council 2003 Recommendations to Legislature

- Endorse need for Interim and Long-Term Stream Flow Methods.
- Agreement by WPC that Apse approach is a reasonable reconnaissance-level approach.
- Although subcommittee did not agree on summer statistic, WPC chose median of daily flows
- DEP will set up working group to establish framework for using interim approach for regulating streamflows and to revise minimum streamflow regulations.
- DEP will continue to work with stakeholders to develop a long-term approach.

Proposed Long-Term Protocol

- 1. Target Fish Community Regions
 2. Habitat Selection Criteria
- **3**. Fish Habitat Regions
- **4**. Habitat model
- **5**. Habitographs
- 6. Application on individual cases
- **7**. Impact simulator

Determine Target Community Regions using available fishing data stratified for stream order (small-big rivers)

Bain & Meixler 2000

Target community spawning criteria

Fish Species	Date	Temper ature	Mesohabitat	Depth	Velocity	Substr ate	Other
White Sucker	Late Spring	57-68F	Shallow water, Isolated Pools and riffles	Shallow <50cm	Swift/Flowing 10-45	Gravel/ro cky Akal, micro, meso	
Common Shiner	May 1- July 15	60-65 F:15.5- 18.3C	Shallow riffles	13-44mm (under 5)	Slow <=20	Gravel/S and Akal, psamal, micro	Likes to spawn over nests of other species
Fallfish	April 27- June 10	over 14.4C	Quiet pools	Shallow ≺50	Slow <=20	Gravel/s mall stones Akal, micro, meso	Eggs are covered by the parent with gravel
Longnose Dace	June and early July	11.7 C	Riffles, runs with gravel bottom	2-4inches (5-10cm) <15	Strong/Over 45 cm per second	Pebbles over 5cm Meso	Males guard territories, but no nest is built
Blacknose Dace	Late May- July	About 70F	Shallow riffles	4-8 inches <20	Fast water >45	Gravel Akal, micro	

FALLFISH

Presence	(76%)	Beta
	BOULDER	1.95
	SHADING	-1.07
	DEPTH 0-25 cm	-1.76
	VELOCITY 45-60 cm/s	1.06
	RUN	-0.57
High abur	ndance (60%)	
	Overhanging	
	vegetation	-0.97

COMMON SHINER		
Presence (80%)	2	Beta
BOULDER		1.71
RIPRAP		1.40
SHADING	a logo and log	-1.48
DEPTH 50-75	5 cm	-1.23
High abundance (69%)	
BOULDER		1.68
SHADING		-1.01

WHITE SUCKER

ence (95%)	Beta
DEPTH 75-100 cm	5.01
DEPTH 50-75 cm	2.19
MESOLITHAL	RF 53053638
(small cobble)	1.62
UNDERCUT BANK	1.66
abundance (66%)	- and -
Depth 75-100	7.62
	ence (95%) DEPTH 75-100 cm DEPTH 50-75 cm MESOLITHAL (small cobble) UNDERCUT BANK aburdance (66%) Depth 75-100

preference

LONGNOSE DACE

Presence	(92%)	Beta
	RIFFLE	2.05
100	FAST RUN	2.45
	XYLAL (wood)	4.60
	RIPRAP	2.29
High abur	ndance (73%)	
	VELOCITY 45-60 cm/s	3.35

BLACKNOSE DACE

Presence (94%)	Beta
DEPTH 0-25cm	3.03
BOULDER	2.57
SHADING	-1.44
SHALLOW MARGIN	1.65
PELAL (mud)	3.09
VELOCITY 45-60 cm/s	1.46
Submerged	-
vegetation	-1.44
High abundance (79%)	
MICROLITHAL	
(small gravel)	-4.20

Establish of habitat selection criteria

- good quality rivers
- regionally valid set
- seasonal

FALLFISH		
Presence	(76%)	Beta
	BOULDER	1.95
	SHADING	-1.07
A REPORT	DEPTH 0-25 cm	-1.76
30 1 1	VELOCITY 45-60 cm/s	1.06
_	RUN	-0.57
High abur	idance (60%)	
	Overhanging	
	vegetation	-0.97

COMMON	SHINER	
Presence	(80%)	Beta
	BOULDER	1.71
anistis	RIPRAP	1.40
NEL SHOWS	SHADING	-1.48
2 R	DEPTH 50-75 cm	-1.23
High abur	idance (69%)	
	BOULDER	1.68
	SHADING	-1.01

P re se n	ce (95%)	Beta
The second s	DEPTH 75-100 cm	5.01
3355 25555	DEPTH 50-75 cm	2.19
	MESOLITHAL	133 2005638
	(small cobble)	1.62
	UNDERCUT BANK	1.66
High at	oundance (66%)	and the second s
	Depth 75-100	7.62

Presence	(94%)	Beta
	DEPTH 0-25cm	3.03
	BOULDER	2.57
	SHADING	-1.44
Contract of the second	SHALLOW MARGIN	1.65
	PELAL (mud)	3.09
1	VELOCITY 45-60 cm/s	1.46
	Submerged	1000
	vegetation	-1.44
High abu	ndance (79%)	
	MICROLITHAL	
	(small gravel)	-4.20

LONGNOS	E DACE	
Presence (92%)		Beta
	RIFFLE	2.05
-	FAST RUN	2.45
and the second second	XYLAL (wood)	4.60
SINT ALL	RIPRAP	2.29
High abundance (73%)		and the second
	VELOCITY 45-60 cm/s	3.35

Delineate State into Hydro-Morphological Regions

- supported by HUC
- geology etc. Overlay with TCR

Representative watersheds

- habitat census
- representative sites
- mapping low flows

VIRGIN R VER: ABOVE QUALL CREEK Overlay of multispectral image, classified image and vector layer of mapped habitat

> Habitat Deep Giide Run Shallow Run Turbulent Riffle Shallow Water Shoal Pool Submerged Veg

Hydrological criteria setting CUT-curves Rearing and Growth

Hydrological criteria setting CUT- curves

winter survival

Month

